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Abstract
In this paper, a partial-order relation is defined among vertices of a network to
describe which vertex is more important than another on its contribution to the
connectivity of the network. A maximum linearly ordered subset of vertices is
defined as a chain and the chains sharing the same end-vertex are grouped as
a family. Through combining the same vertices appearing in different chains,
a directed chain graph is obtained. Based on these definitions, a series of
new network measurements, such as chain length distribution, family diversity
distribution, as well as the centrality of families, are proposed. By studying the
partially ordered sets in three kinds of real-world networks, many interesting
results are revealed. For instance, the similar approximately power-law
chain length distribution may be attributed to a chain-based positive feedback
mechanism, i.e. new vertices prefer to participate in longer chains, which
can be inferred by combining the notable preferential attachment rule with a
well-ordered recommendation manner. Moreover, the relatively large average
incoming degree of the chain graphs may indicate an efficient substitution
mechanism in these networks. Most of the partially ordered set-based properties
cannot be explained by the current well-known scale-free network models;
therefore, we are required to propose more appropriate network models in the
future.

PACS numbers: 89.75.Hc, 89.75.Fb, 02.10.Ab

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the past decade, characterizing and modeling complex networks attract many attentions
from various areas [1–8]. Interestingly, it is found that lots of real-world complex networks

1 Author to whom any correspondence should be addressed.

1751-8113/10/185001+13$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/43/18/185001
mailto:crestxq@hotmail.com
http://stacks.iop.org/JPhysA/43/185001


J. Phys. A: Math. Theor. 43 (2010) 185001 Q Xuan et al

share several common statistical properties [9], such as small-world [1], scale-free [2], power-
law clustering function [3], self-similarity [10–12], symmetry [13, 14], etc. In order to explain
these properties, a large number of models have been proposed [1–3, 15–18]. For instance,
Watts and Strogatz (WS) [1] proposed a simple small-world network model by introducing
randomness into a regular network through a rewiring process, and the first scale-free network
is proposed by Barabási and Albert (BA) [2] through introducing the preferential attachment
(PA) rule into the network growing process. Most of these traditional network properties are
based on the single-vertex or pair-vertices measurements, e.g. the degree and the clustering
coefficient of a vertex or the symmetry and the shortest path length between a pair of vertices,
etc. These types of properties are far from sufficient when the interaction between vertices is
especially emphasized in complex networks.

Recently, the basic structural motifs recurring frequently in complex networks were
carefully studied [19, 20], and it seems that the rank distributions of these motifs can be used
to classify networks [20], e.g. real-world networks always present significantly larger numbers
of these motifs compared with randomized networks. This finding is of much interest because
it suggests that motifs rather than vertices may be the basic cells to perform the higher level
functions of the systems. However, search of large motifs, if any, seems a little blindfold and
sometimes is very time-consuming because there must be a mass of different connected motifs
of large size. Therefore, in large-scale social networks, researchers are more likely to directly
reveal the modules defined by groups (communities) of vertices within which connections
are denser than among them [9, 21, 22]. It is widely believed [9] that vertices in the same
community are inclined to share common properties and dynamics. However, the ambiguous
definition [21] of community produces an inevitable result that every union of communities is
also a community. In such a situation, a hierarchy among the communities has to be always
assumed a priori to overcome such limitation [9, 23].

In this paper, we would like to provide an optional method to rank and classify vertices
more precisely based on their contributions to the connectivity of the target network. Firstly,
we will introduce several definitions about relations in discrete mathematics [24]. There are
many kinds of relationships in the world. A network itself defines a relation among vertices,
i.e. two vertices are related if they are connected. And in many cases we are more interested in
order relations which could tell us when an element is ‘smaller than’ or ‘preceding’ another.
A partially ordered set then could be defined as a set together with a relation describing that
one of the elements must precede the other for certain pairs of elements in the set. It should
be noted that, different from a linear order, in a partially ordered set some pairs of elements
may not be related to each other. A familiar real-world example of a partially ordered set is
a collection of people ordered by genealogical descendancy [25]. Some pairs of people bear
the ancestor–descendant relationship, but other pairs do not.

Generally, in a network, vertices sharing several same neighbors could be compared with
each other, i.e. a vertex could be considered to precede another one if each of its neighbors
is also the neighbor of its posterior. In fact, a vertex can be completely replaced by its
posterior on its contribution to the connectivity of the network. The vertex set together with
such relation forms a partially ordered set in the network. A maximum linearly ordered
subset of vertices then is defined as a chain and the chains sharing the same end-vertex are
grouped as a family. Measurements of chains and families may provide ultra information to
understand the intrinsic mechanisms of real-world complex networks and thus are carefully
studied in this paper. The results are interesting and challenging because most of the common
quantitative and qualitative partially ordered set-based properties revealed in several real-
world networks, such as the similar approximately power-law chain length distribution,
cannot be explained by current well-known network models [2, 17, 18]. Therefore,
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more appropriate network models should be provided in the future to explain these new
properties.

The rest of the paper is organized as follows. In the next section, partially ordered set and
other related concepts, e.g. chain and family, are defined in a network and a brief algorithm
is provided to obtain them, at the same time, the tested data sets are also introduced here.
Measurements of chains and families in several real-world and artificial complex networks are
carefully studied in sections 3 and 4, respectively. The work is summarized in section 5.

2. Partially ordered set in a network

2.1. Definitions

A network is denoted by G = G(V,E), where V is the set of vertices and E ⊆ V × V is the
set of edges. Vertices vi and vj are adjacent if (vi, vj ) ∈ E. A subset of vertices Ui ⊆ V is
named as the neighbor set of vi if each vertex in Ui, while none of the vertices in V \Ui , is
adjacent to vi . By these notations, a relation R, denoted by the symbol ‘�’, on the vertex set
V can be defined as

vi � vj ⇔ Ui ⊆ Uj . (1)

Such a relation � on the vertex set V is reflexive and transitive because equations (2) and (3)
must be always satisfied:

vi � vi, (2)

vi � vj , vj � vk ⇒ vi � vk. (3)

Furthermore, if we consider that vi and vj are equal or, more specific, symmetric, denoted by
vi = vj , when Ui ⊆ Uj and Uj ⊆ Ui are both satisfied, then the relation � on the vertex set
V is also antisymmetric represented by

vi � vj , vj � vi ⇒ vi = vj . (4)

It should be noted that here vi = vj just means that the two possible different vertices are equal
on their neighbor sets, i.e. Ui = Uj . Thus, the relation � can be called a partial order on the
vertex set V, and the vertex set V together with the partial order � is called a partially ordered
set [24]. It is worthy of note that the partial order defined between two vertices completely
depends on the relationship between their neighbor sets; as a result, it is somewhat related
to the degree, i.e. the number of neighbors, of vertices, i.e. denoting the degree of vi by ki,
equation (5) must be satisfied:

vi � vj ⇒ ki � kj . (5)

A chain in such a partially ordered set is denoted by a maximum linearly ordered subset
θi = {

vi1 , vi2 , . . . , vil

} ⊆ V satisfying equation (6):

vi1 � vi2 � · · · � vil , (6)

at the same time, for each vertex vj in the set V \θi , the vertex subset θi ∪ vj cannot be linearly
ordered. For instance, the network in figure 1(a) has two chains va � vb � vc � vd and
vi � vj � vk � vl . It should be noted that both the subsets {va, vb, vc} and {va, vb, vc, vd, vi}
in the figure are not chains because the former is not a ‘maximum’ linearly ordered subset and
the latter cannot be linearly ordered at all.

Naturally, each chain has an end-vertex, e.g. vil in equation (6); the end-vertex set of
a network is denoted by VE containing all the end-vertices of the chains in the network,
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Figure 1. (a) Following the definition of the partial relation �, the network has two chains
va � vb � vc � vd and vi � vj � vk � vl . It should be noted that both the subsets {va, vb, vc}
and {va, vb, vc, vd , vi} are not chains here just because the former one is not a ‘maximum’ linearly
ordered subset and the latter one cannot be linearly ordered at all. (b) Two chains va � vb � vc

and ve � vd � vc sharing the same end-vertex vc are grouped as a family {va, vb, ve, vd , vc}.

e.g. VE = {vd, vl} for the network shown in figure 1(a). Furthermore, different chains in a
network may share the same end-vertex, and the chains θij , j = 1, 2, . . . , ψi , sharing the same
end-vertex vi are grouped as a family φi in the network denoted by

φi =
ψi⋃

j=1

θij . (7)

So there will be totally |VE| families, and each family corresponds to an end-vertex in the
network. For instance, in figure 1(b), the chains va � vb � vc and ve � vd � vc sharing the
same end-vertex vc can be grouped as a family {va, vb, ve, vd, vc}.

The main contribution of a vertex in a network is determined by its hinge role in connecting
other vertices, which is especially remarkable for those end-vertices in the network. In fact,
through the above definitions, we can get the following theorem:

Theorem 1. Removal of any vertex in a chain except the end-vertex will not influence the
average shortest path length of the remaining subnetwork, that is, the end-vertex of a chain
can completely replace the other vertices in the same chain on their contributions to the
connectivity of the network.

Theorem 1 can be easily proven with the fact that, considering a chain denoted by equation (6),
Uij ⊆ Uil must be satisfied for each j � l, which suggests that each shortest path passing by
the vertex vij can change its route to pass through the vertex vil without increasing its length.
It should be noted that, if all the neighbors of vi are also the neighbors of vj , i.e. vi � vj ,
the betweenness centrality [9] of vi , denoted by Ci, must not be larger than that of vj , as is
represented by

vi � vj ⇒ Ci � Cj . (8)

Therefore, an end-vertex must have the largest betweenness centrality in its family.

2.2. The algorithm

Based on the above definitions, here, we will briefly introduce our method to find all the
chains in a network. In the procedure, the chain graph is constructed at first, then the chains
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Figure 2. (a) A simple network with seven vertices. (b) The partial-ordered relations among these
vertices. Each pair of ordered vertices are connected by a directed edge, and the dotted edges are
redundant. (c) The chain graph obtained by dropping those redundant edges.

are extracted by a depth first search algorithm in the chain graph, and the families can be
obtained by simply combining these chains. Particularly, the algorithm is summarized by the
following three steps.

(1) Build chain graph. For each pair of vertices vi and vj sharing at least one common
neighbor, determine if they could be ordered, i.e. vi � vj or vj � vi , by comparing
their neighbor sets. Compress those symmetric vertices sharing exact same neighbors,
i.e. vk1 = vk2 = · · · = vkp

(k1 < k2 < · · · < kp), as one vertex vk1 . Then a compressed
digraph can be derived by considering that each pair of ordered vertices vi � vj are
connected by a directed edge pointing from vi to vj . Reveal all the triangle motifs in the
compressed digraph, e.g. vi � vj , vj � vk , and vi � vk , and remove all the redundant
edges, e.g. vi � vk , simultaneously. Replace each compressed vertex vk1 by a directed
chain vk1 → vk2 → · · · → vkp

; at the same time, the incoming edges of the compressed
vertex vk1 still point to the beginning vertex vk1 in the directed chain, while the outgoing
edges of the compressed vertex vk1 are now originated from the last vertex vkp

. Thus, the
chain graph is constructed. A simple example is shown in figure 2.

(2) Extract chains. In the chain graph, there are three types of vertices: the original-vertices
with no incoming edges, the end-vertices with no outgoing edges and the middle-vertices
with at least one incoming edge and one outgoing edge. Then all the chains could be
revealed by a depth first search algorithm in the chain graph: begin with the original-
vertices, along the outgoing edges, till reaching the end-vertices.

(3) Combine to families. When all the chains are collected, each family can be obtained by
simply combining all the chains sharing the same end-vertex.

2.3. Data sets

We mainly study the partially ordered sets in three kinds of real-world networks. The first
is the protein–protein interaction networks collected from BioGrid database [26], where each
vertex represents a protein or a gene, and each edge denotes the interaction between these
proteins or genes. We use the giant components of four protein–protein interaction networks,
corresponding to four species including Caenorhabditis elegans (CAE), Saccharomyces
cerevisiae (SAC), Homo sapiens (HOM) and Drosophila melanogaster (DRO), derived by
the two-hybrid experimental system. The second is the autonomous system (AS) relationship
networks collected from CAIDA database [27], where each vertex represents an autonomous
system, and each edge denotes a certain relationship between two autonomous systems, such
as provider–customer, peer-to-peer, or sibling-to-sibling. We use six AS relationship networks
captured at different times from 2004 to 2009, i.e. 2004 (5 Jan.), 2005 (3 Jan.), 2006 (2 Jan.),
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Table 1. The basic properties including the number of vertices N, the average degree 〈k〉 and
the average clustering coefficient 〈C〉, for the three kinds of real-world networks and the artificial
networks derived by the three models. All the networks have a power-law degree distribution P(k)

and almost all the networks except those derived by the BA model have a power-law clustering
function C(k).

Networks N 〈k〉 〈C〉
BioGird

CAE 2575 3.34 2.11 × 10−2

SAC 3085 5.00 2.08 × 10−1

HOM 4583 3.96 3.48 × 10−2

DRO 6853 6.43 3.47 × 10−2

CAIDA
040105 16 301 4.04 2.33 × 10−1

050103 18 740 4.11 2.47 × 10−1

060102 20 542 3.89 2.24 × 10−1

070101 24 013 4.11 2.20 × 10−1

080107 26 960 4.03 2.04 × 10−1

090105 30 610 4.48 2.37 × 10−1

Douban
Friendship 504 912 11.3 9.23 × 10−2

Model
BA 4000 4.00 (9.68 ± 1.96) × 10−3

LW 4000 4.00 (3.10 ± 0.08) × 10−1

DMS 4000 4.00 (7.39 ± 0.02) × 10−1

2007 (1 Jan.), 2008 (7 Jan.), 2009 (5 Jan.). The third is the friendship network crawled on
18 March 2009 from Douban database [28], where each vertex represents a Douban user, and
each edge denotes an online friendship between two users.

All of these real-world networks have both power-law degree distribution and
approximately power-law clustering function which have been well explained by many
published models. For instance, The power-law degree distribution can be easily explained
by the BA model [2] which could be further improved to explain the relatively high average
clustering coefficient and the power-law clustering function through applying the PA rule in a
predefined local world of a newly added vertex. Such improved network models are named as
local-world (LW) models [15–17]. Besides, Dorogovtsev, Mendes, and Samukhin (DMS) [18]
proposed a more straightforward scale-free network model. In the DMS model, a newly added
vertex is connected to both ends of a randomly selected edge at every time step. This very
simple model can explain both the power-law degree distribution and the power-law clustering
function very well. In order to provide comparative results, we also study the partially ordered
sets in the artificial networks created by the three models, i.e. the BA model, the LW model
proposed by Xuan et al [17] and the DMS model. For each model, we create 100 networks
with the same number of vertices and edges, and the mean value as well as the standard
deviation of the other network properties will be recorded. Several basic properties, including
the number of vertices N, the average degree 〈k〉 and the average clustering coefficient 〈C〉,
of the tested real-world and artificial complex networks are presented in table 1, while the
partially ordered set-based properties are recorded in table 2.
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Table 2. The partially ordered set-based properties, i.e. the number of chains Nθ , the average chain
length 〈Lθ 〉, the average incoming degree 〈kin〉 of the chain graph, the number of families Nφ , the
average family diversity 〈ψ〉, the average family size 〈Lφ〉 and the average family overlapping size
〈Lo

φ〉, for the three kinds of real-world networks and the artificial networks derived by the three
models.

Networks Nθ 〈Lθ 〉 〈kin〉 Nφ 〈ψ〉 〈Lφ〉 〈Lo
φ〉

BioGrid
CAE 3 317 10.5 1.55 1044 3.18 24.1 9.39 × 10−1

SAC 5 013 5.35 1.69 1859 2.70 12.1 3.67 × 10−1

HOM 7 218 5.00 1.64 2443 2.95 11.0 1.35 × 10−1

DRO 17 624 3.39 2.66 4444 3.97 10.3 8.56 × 10−2

CAIDA
040105 10 916 31.8 2.68 3647 3.60 62.4 8.28 × 10−1

050103 12 991 30.8 2.80 4140 3.77 64.3 7.94 × 10−1

060102 13 496 36.2 2.61 4504 3.56 68.0 7.95 × 10−1

070101 16 591 31.3 2.82 5319 3.78 61.0 5.43 × 10−1

080107 18 028 33.2 2.73 5926 3.78 61.8 4.98 × 10−1

090105 22 431 30.4 3.12 6808 4.05 63.9 5.21 × 10−1

Douban
Friendship 2646 508 6.30 5.72 316 774 8.40 45.5 6.15 × 10−2

Model
BA (mean) 3933.9 1.05 5.46 × 10−2 3831.6 1.03 1.06 1.26 × 10−5

BA (std) 8.79 7.77 × 10−3 7.55 × 10−3 19.1 5.19 × 10−3 8.27 × 10−3 7.01 × 10−6

LW (mean) 3204.6 1.54 4.60 × 10−1 2746.6 1.17 1.63 1.88 × 10−4

LW (std) 21.9 1.50 × 10−2 1.07 × 10−2 23.8 8.61 × 10−3 2.02 × 10−2 2.23 × 10−5

DMS (mean) 3214.2 1.88 7.41 × 10−1 2002.7 1.61 2.41 6.04 × 10−4

DMS (std) 22.0 1.33 × 10−2 1.03 × 10−2 18.0 1.75 × 10−2 3.19 × 10−2 3.76 × 10−5

3. Measurements of chains in complex networks

The vertices in a chain play similar roles in connecting other vertices in the network. In fact,
a vertex can be completely replaced by its posterior in the same chain on its contribution to
the connectivity of the network. So studying the properties of the chains in complex networks
is of much scientific interest. The length of a chain θi is denoted by the number of vertices
it contains, i.e. lθ (i) = |θi |. Denoting the number of chains in a network by Nθ , the average
chain length of the network by 〈Lθ 〉 and the chain length distribution expressing the fraction
of chains in the network with length lθ by P(lθ ), it is found that the chain distributions of all
the three kinds of real-world networks are somewhat consistent with a power-law property, i.e.
P(lθ ) ∼ l−α

θ , with different exponents (here only the chains with their length larger than 1, i.e.
lθ > 1, are fitted), as shown in figures 3(a)–(c). All the parameters are determined by fitting the
preprocessed (e.g. logarithmized) data adopting the method of multiple linear regression using
least squares (the same below). The chain length distributions for three artificial networks are
shown in figure 3(d); however, none of the chains in the networks derived by the three models
has the length longer than 7. In fact, the average chain lengths of these artificial networks are
much shorter than those of the real-world networks.

Long chains in real-world networks may be attributed to the similar quasi-star structure
in these networks, where many vertices are only connected to just a very few central vertices
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Figure 3. The chain length distributions for (a) the four protein–protein interaction networks; (b)
the six AS relationship networks; (c) the Douban friendship network and (d) the three artificial
networks. All of the distributions for the three kinds of real-world networks seem to be consistent
with a power-law property, i.e. P(lθ ) ∼ l−α

θ , with different exponents, while those for the artificial
networks do not have such property or, at least, have too narrow chain length distributions. Here
only the chains with their length larger than 1, i.e. lθ > 1, are fitted. It should be noted that
the data in the figures (the same for figure 6) experience the same smoothing process: denoting
aq = p × 10q and bq = (p + 1) × 10q where p = 1, 2, . . . , 9 and q � 1 is a natural number,
the average probability that the chains with length lθ ∈ (aq , bq ] appear in the network then is
calculated by P(l

q
θ ) = 1

Nθ ×10q

∑
lθ ∈(aq ,bq ] N|θ |=lθ , where l

q
θ is simply set to the middle value of

the interval (aq + bq)/2 and N|θ |=lθ is the number of chains with length lθ .

(hubs) and thus always have the same neighbor sets. In fact, Carmi et al also revealed that
the proportion of this type of vertices is close to 30% in AS relationship network, and such
vertices always leave or form small clusters and can reach the rest of the network only through
the nucleus [29]. Figures 4(a) and (b) present two chains extracted in the AS relationship
network and Douban friendship network, respectively. For social networks, the power-law
chain length could further be explained by considering that there must be a relatively fixed order
in which one recommends his friends or other famous people to the newly added individual,
and the freshman then is more likely to be associated with those recommendees of higher
rank; in most cases, such recommendees are also the friends of his precursors sharing the
same recommender, as shown in figure 5. Based on the traditional PA rule, a freshman is
more likely to be associated with a person of higher prestige and thus, under the mechanism
shown in figure 5, may have more precursors; in other words, here the PA rule also means
a chain-based positive feedback mechanism, i.e. a newly added vertex may join in a longer
chain with a higher probability. That is, the PA rule with a well-ordered recommendation
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(a) (b)

Figure 4. Chains extracted in real-world networks: (a) AS relationship network and (b) Douban
friendship network. The first chain associated with directed lines consists of 11 vertices marked
by 1, 2, . . . , 11, and these vertices have totally three neighbors marked by 12, 13, 14 respectively,
while the second chain consists of 13 vertices which are connected to totally six neighbors.

Recommander
The ordered recommandees

1 2 3

a b c d

r

Chain
Freshman

Precursors

Figure 5. The well-ordered mechanism of social networks. vr , as a person of high status in a
social circle, always recommends his close friends or other people of high prestige, i.e. v1, v2 and
v3, in a relatively fixed order to his adherents, i.e. va, vb, vc and vd . As a result, the freshman va is
more likely to be associated with the recommendees of higher rank, e.g., v1, which, in most cases,
are also the friends of his precursors sharing the same recommender, and thus long chains will be
formed as time goes on.

manner can explain the power-law chain length distribution revealed in the Douban friendship
network.

Besides, a vertex in a network may appear in various chains, i.e. a vertex, like a multi-
functional block, may have the ability to substitute different vertices in different chains when
they break down. The average number of chains that a vertex participates in can be easily
calculated by Nθ 〈Lθ 〉/N , where the number of vertices N, the number of chains Nθ and the
average chain length 〈Lθ 〉 are all recorded in table 2. Here, we would like to measure the
multi-functional ability of a vertex by its incoming degree kin(i) and outgoing degree kout(i)

in the corresponding chain graph. Denoting the average incoming degree of the chain graph
by 〈kin〉 and the average outgoing degree by 〈kout〉, the equation 〈kin〉 = 〈kout〉 must be satisfied
with the reason that each directed edge connects two different vertices in the chain graph. It
should be noted that a vertex vi is isolated in the chain graph, i.e. kin(i) = kout(i) = 0, if and
only if it belongs to a chain only containing itself. In fact, the chain graph of each artificial
network presented in this paper has a large number of isolated vertices (the chains with length
equal to 1); as a result, the chain graphs of the artificial networks have extra small average
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Figure 6. The family diversity distributions. The distributions for the AS relationship networks
possess a near power-law property, i.e. P(ψ) ∼ ψ−2.0, which can be explained by the DMS model
to a certain extent, while those for the protein–protein interaction networks and the friendship
network present a similar exponential decayed power-law property, i.e. P(ψ) ∼ ψ−γ e−λψ , with
different parameters.

incoming degree 〈kin〉. Intuitively, in social networks, although a newly added individual is
inclined to be connected to the recomendees in regular sequence at the beginning, he/she might
also become connected to the individuals in other communities who are not recommended by
the initial recommender; therefore, chains in different communities may intersect each other
at many different vertices, and thus the chain graphs of social networks may always have
much large average incoming degree 〈kin〉. For example, in this paper, the chain graph of the
Douban friendship network has the largest 〈kin〉 in all the tested networks.

4. Measurements of families in complex networks

Denoting the diversity of a family φi by ψi representing the number of chains it contains,
the number Nφ of families and the average family diversity of the tested networks are also
recorded in table 2, where we can find that, compared with the three artificial networks, the
real-world networks have much higher average family diversity. Generally, a family with
high diversity always has a strong end-vertex which, as an important junction, connects many
different parts as a whole in the network. The family diversity distribution is denoted by P(ψ)

representing the fraction of families in the network with diversity equal to ψ . It is found that
the protein–protein networks and the friendship network present a similar exponential and
power-law family diversity distribution, i.e. P(ψ) ∼ ψ−γ e−λψ , with different parameters,
as shown in figures 6(a) and (c), while the AS relationship networks seem to present a near
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Figure 7. The average distance d(lφ � L) between families with their size larger than L as
functions of size L. Generally, The similar logarithmically decreasing trend of d(lφ � L) suggests
that most of the large families are always centralized around unique centers in these real-world
networks and families continuously shrink as they depart from the centers, which can be somewhat
explained by the DMS model. Moreover, the centralization seems to be abruptly enhanced when
L > 200 for the AS relationship networks and L > 400 for the friendship network, which may
indicate a similar two-level structure of these networks.

power-law family diversity distribution, i.e. P(ψ) ∼ ψ−2.0, as shown in figure 6(b). By
comparison, the diversity distributions of the artificial networks are shown in figure 6(d).
The heavy tails of the diversity distributions of real-world networks can be well explained by
the Internet model of Carmi et al. In the model, many low-degree vertices are connected to the
rest of the network only through a few hubs which are densely connected with each other and
form a so-called nucleus of the network. So it is probable that a group of low-degree vertices
is connected to one or two hubs in the nucleus and thus belongs to the same chain. Since the
nucleus is highly connected, there may be another vertex in the nucleus which is connected to
these hubs as well and thus serves as the end-vertex of this chain. Certainly, this vertex can
be also connected to other hubs, i.e. it is also the end-vertex of many other chains, and thus
leading to particularly high-diversity families.

The size of a family φi is denoted by lφ(i) representing the number of vertices in it. And
due to the significant roles of the end-vertices in the respective families, the distance between
the two families φi and φj could be denoted by dij representing the shortest path length
between their end-vertices in the subnetwork GE = G(VE,EE). Denoting d(lφ � L) as
the average distance between families with their size larger than L, the relationships between
d(lφ � L) and L for the real-world networks and the artificial networks are depicted in
figures 7(a)–(d) respectively. The similar logarithmically decreasing trend of d(lφ � L)
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suggests that most of the large families are always centralized around unique centers in these
real-world networks and families continuously shrink as they depart from the centers, which
can be somewhat explained by the DMS model. Moreover, the centralization seems to be
abruptly enhanced when L > 200 for the AS relationship networks and L > 400 for the
friendship network, which may also be attributed to the densely connected nuclei in these
networks. Two families are considered overlapped if they share common vertices and the
family overlapping size loφ(i, j) between the pairwise families φi and φj , representing the
correlation between them, is defined by the number of common vertices in them. Also with
the reason that there are a large number of chains/families only containing one vertex in the
artificial networks, they have very small average family overlapping size

〈
Lo

φ

〉
. Similarly, the

long chains as well as the quasi-star structure should be responsible for the relatively large〈
Lo

φ

〉
of the real-world networks, because in these networks, there might be different vertices

in the nucleus serving as the end-vertices of a same group of low-degree vertices, which leads
to different but highly overlapping chains and therefore highly overlapping families.

5. Summary

In this paper, we have defined a partially ordered relation between pairwise vertices by
comparing their neighbor sets, and then proposed a series of new measurements based
on predefined chains and families, such as chain length distribution and family diversity
distribution, in order to evaluate different network models. Unfortunately, most of these
partially ordered set-based properties revealed in real-world networks cannot be explained by
those well-known network models, such as the Barabási (BA) model, local-world (LW) model
and Dorogovtsev, Mendes, and Samukhin (DMS) model, although, by comparing, the LW
model and the DMS model behave a little better than the BA model. Interestingly, it seems
that long chains, high diversity, as well as strong overlap can be explained to a certain extent
by a quasi-star structure with a densely connected nucleus which has already been revealed in
the autonomous system relationship networks by Carmi et al adopting a k-shell decomposing
algorithm. So we believe that such new measurements can help us better understand the
structure of real-world networks and further provide more appropriate models for them.
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[15] Mossa S, Barthélémy M, Stanley H E and Amaral L A N 2002 Truncation of power law behavior in ‘scale-free’

network models due to information filtering Phys. Rev. Lett. 88 138701
[16] Li X and Chen G 2003 A local-world evolving network model Physica A 328 274
[17] Xuan Q, Li Y and Wu T-J 2007 A local-world network model based on inter-node correlation degree Physica

A 378 561
[18] Dorogovtsev S N, Mendes J F F and Samukhin A N 2001 Size-dependent degree distribution of a scale-free

growing network Phys. Rev. E 63 062101
[19] Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D and Alon U 2002 Network motifs: Simple building

blocks of complex networks Science 298 824
[20] Xu X, Zhang J and Small M 2008 Superfamily phenomena and motifs of networks induced from time series

Proc. Natl Acad. Sci. 105 19601
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